Canton: A Daml based ledger interoperability
protocol*

Digital Asset Canton Team
canton@digitalasset.com
http://canton.io

2020-02-04

Abstract

Building distributed applications that involve multiple organizations
is hard with today’s technology. For each application, all organizations
must agree on the data encoding, transport mechanisms, and interaction
rules, and all must implement their part of the interaction correctly, in-
cluding authentication and authorization. Once implemented, such an ap-
plication often becomes a silo: there is no general convenient, secure and
privacy-preserving way to integrate such applications and compose the
business workflows that they automate. Smart contract platforms such as
Ethereum try to break these silos, but suffer from scalability, authorization
and privacy problems. Daml| is a smart contract programming language
whose distinguishing features are the built-in models of authorization and
privacy. Canton is a next-generation distributed Daml runtime that im-
plements these models faithfully. By partitioning the global state it solves
both the privacy problems and the scaling bottlenecks of platforms such as
Ethereum. It allows developers to balance auditability requirements with
the right to forget, making it well-suited for building GDPR-compliant
systems. Canton handles authentication and data transport through our
so-called synchronization domains. Domains can be implemented in dif-
ferent ways depending on trust requirements. Domains can be deployed at
will to address scalability, operational or trust concerns. They are permis-
sioned but can be federated at no interoperability cost, yielding a virtual
global ledger that enables truly global composition of business workflows.

1 Introduction

Automation through distributed applications can increase the efficiency and
lower the costs of conducting business between different organizations. For ex-

*Canton is Daml ledger interoperability protocol which abstracts over digital ledgers, al-
lowing to integrate them into a global virtual composable smart contract platform. It demon-
strates that a practical system can attain the properties that we deem critical for the overall
adoption of smart contract platforms.

canton@digitalasset.com
http://canton.io
https://daml.com

ample, electronic price catalogs and order management systems eliminate many
labor-intensive manual tasks. Yet, to build an application that spans multiple
organizations, rules for exchanging data must be agreed on, correctly imple-
mented, and secured against malicious participants and outsiders. Our thesis is
that doing so with existing technology requires too much non-essential technical
and organizational complexity, especially when integrating applications. This
leads to unnecessary and sometimes prohibitively high costs, as well as brittle
systems. Canton aims to significantly lower this complexity, while simultane-
ously providing scalability and privacy. Developers can then focus on the core
business logic and the value-adds instead of the infrastructure and plumbing.

Distributed applications from scratch To build an application that auto-
mates a cross-organization workflow, one must devise and correctly implement
a set of rules for exchanging data (i.e., a communication protocol). Today’s
standards help with transporting data (e.g., REST, gRPC) and describing its
shape (e.g., XML schemas, session types), as well as handling authentication
(e.g., X.509, TLS). But implementing the protocol logic remains a non-trivial
task. For example, an estimated 10% of the trade volume in stock markets
is subject to manual intervention (reconciliation), due to mismatches and mis-
takes in interpreting the exchanged data [18]. In response, initiatives such as
ISDA’s CDM have started specifying the protocol logic alongside the data for-
mats [9]. A smart contract platform solves the problem of diverging implemen-
tations by providing a shared data encoding and execution logic for the protocol.
Of course, this shared logic still has to be correct. In particular, the security of
cross-organization distributed applications critically depends on proper autho-
rization. Inadequate authorization features in languages used in existing smart
contract platforms resulted in several high-profile incidents, such as the first
Parity Wallet attack |15]. Finally, in highly-regulated environments, such as
finance, an independently verified log of a participant’s protocol interactions is
a highly valuable auditing tool. But building such logs is not trivial: a consoli-
dated audit trail for the US stock market has now been in the planning phase
since 2012 without an implementation [6].

Integrating applications Business workflows naturally compose into higher-
level workflows. Unfortunately, their software implementations usually do not
— at least not easily, and not with the desired properties. For example, a travel
agency workflow can combine booking a flight with booking a hotel. A desired
property of this combination is atomicity of distributed transactions: a flight
should be booked together with the hotel or not at all. Otherwise, the travel
agent must take on the risk of a partially successful booking, increasing the costs
for the end customer. But this atomicity is only possible if both the airline and
the hotel systems build in specific and compatible support for it. Standards such
as X/Open XA [13] exist, but they have to be (correctly!) implemented by all
of the involved subsystems, including their off-the-shelf components. This is a
significant technical complexity that is not essential to the individual operation,

and thus often never gets implemented [17]. Furthermore, composition often
involves delegation of rights. For example, if a travel agency’s customer pays
using a credit card, (s)he is delegating the control of her/his funds to the agency,
by giving away the credit card number. This delegation is intended to be limited:
the agent should only get control of the funds needed for the trip purchase.
Moreover, there is a link between delegation and atomicity: the funds should be
transferred only if the bookings succeed. But today, fund delegation is neither
specific nor atomic. The resulting problems again increase costs, from rollbacks
to “card not present” fraud that reached US$5.65bn in 2016 [7].

Most smart contract platforms (e.g., [21} |11} |2]) try to address most of the
issues raised so far, though their effectiveness in doing so differs as their contract
programming languages provide different abstractions. Moreover, the platforms
significantly differ in their non-functional properties.

Scalability Platforms relying on proof-of-work blockchains focus on bringing
trust in third parties to an absolute minimum. In particular, such a blockchain
can yield the digital equivalent of golden nuggets: a bearer token that is neither
controlled nor backed by any single real-world party. The platform’s contracts
can then manipulate the balances in this currency jointly with arbitrary other
information. In exchange, the platforms sacrifice scalability: their throughput
is typically limited to tens of transactions per second, and the historic data
required to use the platform securely often grows unboundedly with time. The
throughput can be increased for value transactions by moving them off the
blockchain (e.g., Raiden [16] for Ethereum), but this destroys the ability to
integrate them with other applications, and introduces problems such as routing
and collateralization. But not only blockchains inhibit scaling: most platforms
replicate a global shared state at all their participants. This necessarily puts a
cap on scaling, as any state change must be processed by all participants.

Privacy A global shared state is also a privacy leak that is unacceptable
for use cases such as handling trade secrets, financial data, or healthcare. It
also clashes with the data minimization requirements of the European Union’s
General Data Protection Regulation (GDPR). Pseudonymization helps, but is
not a solution [10]. Furthermore, resting the security on a shared global state
stored in a blockchain data structure clashes with the GDPR’s “right to be for-
gotten” requirement. Some blockchain-based services have already shut down
due to their inability to comply with the GDPR [14]. Advanced cryptogra-
phy can restore privacy to various degrees, up to full-blown private multi-party
computation, but these methods are computationally intensive and present a
significant obstacle to scaling. Platforms that are willing to make stronger trust
assumptions(e.g., [11}2]) can limit data visibility without resorting to expensive
cryptography. However, limiting visibility can also limit transparency: either
through error or malice, data might not be distributed to everyone that should
see it. This can cause disputes. Finally, the privacy requirements often sur-
pass these platforms’ abilities. For example, a stock market trade must happen

atomically, but the buyer’s bank should only see the outgoing money transfer,
and not what this money bought. All practical platforms promising both such
subtransaction-level privacy and transparency (e.g., [4]) rely on trusted execu-
tion environments, such as SGX [1], for protecting privacy. These protections
suffice for some use cases, but recent research [20] makes them inadequate for
many others.

Canton Canton handles synchronization, security, and privacy automatically,
and lets developers focus on their business logic, written in the programming
language Daml [8]. Daml’s transaction model makes atomic composition of
workflows trivial, and makes authorization and privacy both mandatory, yet
simple. The code, written in Daml — though Canton can support any other
language with the same transaction model — precisely describes the allowed in-
teractions between the different parties of a business workflow. A party can be
a legal entity, a physical person, or just one of many accounts for an entity or
person. Parties need to make a one-off infrastructure investment to use Can-
ton. Figure [1]illustrates Canton’s basic architecture. Parties deploy or connect
to one or more Canton participant nodes. Each participant node in turn con-
nects to multiple synchronization domains, a message sequencing and delivery
infrastructure, allowing it to transact with all other parties whose participants
connect to some common domain. Once this distributed setup is in place, Can-
ton implements the business logic faithfully, relieving the developer from data
transport, atomicity, security, transparency and privacy issues, while providing
a verifiable log of all participant actions and allowing for horizontal scaling of
independent workflows.

While Canton provides the abstraction of a virtual global ledger, it has no
physical global state. A Canton participant only receives, stores, and processes
the data it needs to know, where this need is determined at the level of subtrans-
actions. This obeys GDPR’s data minimization principles. Canton also provides
history pruning and redaction capabilities for its log, allowing a trade-off be-
tween the auditability requirements imposed on many financial systems, and the
GDPR’s right to be forgotten. Canton has no scaling bottlenecks: a participant
processes only its own data, and processes workflows synced through different
domains in parallel. Also, no expensive cryptography is used on the critical
data processing paths. Canton does not aim to eliminate trust in third parties
completely, but to keep it small and elective. Third parties run synchroniza-
tion domains, together with the associated identity management components.
Domain operators can see some transaction metadata, but encryption prevents
them from accessing the message contents. Domains can also appoint trusted
entities that users can selectively involve to help process their workflows even
if some of the involved parties are unresponsive. Parties can connect to any
domains they trust, as long as the domain operators accept them. That is,
domains are permissioned by their operators. However, Canton is permisionless
in that anyone can deploy a Canton domain, for any reason. Possible reasons
include lowering latency, addressing any throughput bottlenecks due to message

Party2

Partyl /
\

Participantl Participant2 Participant3

N/

w

Participant4 Participant5 Participant6

Party3 Canton'’s Virtual Global Ledger

Figure 1: The architecture of Canton. Parties use participant nodes to deploy
Canton. Participants connect to other participants through synchronization
domains. The infrastructure forms a virtual global ledger where workflows can
be composed.

sequencing, or making use of existing PKIs. But the domains are not silos: as
long as a common domain for all parties in a transaction exists, parties can still
seamlessly and atomically compose workflows running over multiple domains,
without any support from the domain operators, avoiding any domain lock-in.
Thus, Canton allows truly global workflow composition. We believe that Can-
ton’s features, combined together, will enable an unprecedented efficiency in
developing distributed applications. In particular, the marginal costs of com-
posing Daml workflows will be a fraction of the integration costs of today’s
systems.

2 Daml: Authorization, Privacy, Composition

The secret sauce of Canton are Daml , Canton’s smart contract programming
language, and the hierarchical transactions that Daml produces. Canton can
in general be used with any deterministic language that produces transactions
of the same form. However, Daml’s features make it particularly suitable for
our target setting, where the participants do not have to trust, or even know
each other. Daml is a modern functional language featuring a powerful static
type system that can rule out many undesired behaviors already at compile

VISIBLE TO ALICE, BOB
Bob exercises swap on

#1: SwapOffer $Alice Bob

ALSO VISIBLE TO ISSUER/ \ALSO VISIBLE TO ISSUER2

Alice exercises transfer on Bob exercises transfer on
#2: Asset $Issuerl Alice #3: Asset $Issuer2 Bob
create #4: Asset $Issuerl Bob create #5: Asset $Issuer2 Alice

Figure 2: A sample Daml transaction: Bob accepts Alice’s offer to swap his
asset issued by Issuer2 for Alice’s asset issued by Issuerl. Contract identifiers
are denoted as #1, #2 etc. Parties have different visibility into the transaction.
Outgoing arrows point to the consequences of an action.

time. Such correctness benefits are important for our target setting. Daml has
been successfully used to concisely model complex multi-party interactions in
multiple domains, including finance [3].

The Daml interpreter deterministically converts a Daml expression into a
transaction, and Canton then ensures that the transaction is performed se-
curely and atomically. Daml transactions are hierarchical. A transaction is a
list of actions on contracts. Each action can in turn contain a transaction, a list
of subactions or consequences, giving the transaction its hierarchical structure.
Contracts are the data objects of Canton and have unique identifiers. Daml
concisely describes all possible actions on a given contract, including their con-
sequences. Figure [2| shows a generic example of a swap transaction. Here, Bob
chooses to swap a digital asset that Issuerl issued to him for a digital asset that
Issuer2 issued to Alice. The assets could be anything: digital I-Owe-You tokens,
stock certificates, plane tickets and so on. The transaction consists of a single
action, which is an Fzercise action on a SwapOffer Alice Bob contract with the
identifier 1, performed by the actor Bob. The consequences of exercising the
swap are two transfer Erercise actions on two different Asset contracts. Each
transfer has a Create action as a consequence, creating a new Asset contract.
An FEzercise consumes the contract, so that it cannot be exercised again. That
is, double spends are disallowed. Contracts that have been created, but not yet
consumed are called active contracts. Active contracts correspond to unspent
transaction outputs in Bitcoin.

Daml has a built-in notion of authorization, which is crucial in a distributed
setting. Every action has one or more required authorizers: parties that have
to authorize the action. The authorizers of an FEzercise are its actors. The
authorizers of a Create are the signatories of the created contract. Signatories
are the parties that the Daml programmer annotates as being bound by the

contract’s terms, and are marked by the dollar sign in the figure. The terms
specify the signatories’ real-world obligations. Obligations underlie all cross-
entity business workflows in the real world, and in particular form the basis
of financial assets. Daml’s authorization rules, faithfully implemented by Can-
ton’s cryptographic mechanisms, ensure that a party becomes a signatory only
voluntarily. Authorization propagates as in the following example. By exercis-
ing the swap, Bob authorizes all the direct consequences of the swap, i.e., the
transfers. Alice also authorizes them as she is a signatory on the swap offer con-
tract. Thus, both transfers are authorized by their required authorizers. This
authorization mechanism yields seamless delegation: Alice and Bob can create
a swap offer contract without changing the logic associated with the underlying
assets. Notably, this mechanism mimics the offer-acceptance pattern of the legal
system: Alice and Bob can become joint signatories on a Daml contract only
if the contract creation is a consequence of Bob accepting an offer that Alice
signed.

Daml also has a built-in model of privacy. An action on a contract (including
its subactions) is visible only to the contract’s stakeholders. In the example
in Figure Bob’s exercise of the swap, as well as the SwapOffer contract
itself are only visible to the stakeholders Alice and Bob. Issuerl sees only the
subtransaction transferring the asset it issued, but nothing about the swap or
about Issuer2’s asset. Thus, Daml defines its privacy model at the level of
subtransactions. Canton faithfully implements both the authorization and the
privacy models of Daml.

3 Canton Design Sketch

Daml defines an execution model that includes authorization, privacy and pre-
vention of double spends. Canton enforces this model to the letter in a dis-
tributed setting. We now explain the main ideas behind Canton.

Distributed consistency At a high level, Canton’s primary goal is to pro-
vide consistency of shared state across its participants, where the shared state
of a set of participants consists of the active contracts on which they are joint
stakeholders. The standard approach to distributed consistency is state ma-
chine replication [12], where each participant replicates the same global state. Tt
ensures consistency by requiring deterministic transaction processing (i.e., a de-
terministic state machine) and globally ordered transactions (achieved through
a consensus mechanism). Then, each replica applies the transactions locally in
the given order, and all replicas reach the same state due to the determinism.
This is the conceptual approach taken in Bitcoin and Ethereum. Their proof-
of-work consensus mechanisms additionally ensure consistency with almost no
trust assumptions, and provide these platforms with trustless bearer tokens.
Canton does not aim to create such tokens; instead, it automates the real-world
interactions dealing with rights and obligations of real-world parties. Thus, it
can take a related, but different technical approach. As with state machine

replication, the Canton messaging service provides a total order on transaction
requests within a domain, and transaction processing is deterministic. However,
replicating the entire global state is not acceptable for privacy reasons. Instead,
Canton replicates each contract only at its stakeholders. Thus, similar to a
sharded database, Canton needs an atomic commit protocol.

Let us consider the swap example again, now shown in Figure No party
involved in the transaction can on their own determine if the transaction is
valid. Alice is not a stakeholder on contract #3 and does not know whether
it is active. As for Issuerl, the Daml privacy model prohibits it from even
seeing which contracts are used by the transaction, other than the assets it
issued. Additionally, Canton is built to tolerate malicious participants. Thus,
Issuerl should only accept the transaction if it is sure that Alice authorized the
transfer. To solve these issues, Canton processes transactions in two steps. First,
the submitter sends a confirmation request to every other involved party. The
request pertains only to the transaction parts visible to the request’s recipient,
as shown in Figure The recipients then check whether the request is valid,
and respond with a confirmation response. Their checks ensure two things.
First, they ensure that the Daml authorization model is respected, and that the
correct parties are notified of the transaction, thwarting any malicious behavior
by the submitter. Second, they prevent double spends. Double spends are
not necessarily a sign of a malicious submitter; they can simply occur under
conflicting concurrent workflows. Similar to Calvin [19], the domain’s total
ordering and Daml’s determinism allow everyone to resolve conflicts in the same
way, with the difference that Calvin is not built for malicious settings. This is
different from a standard two-phase commit, where replicas can always non-
deterministically abort a request.

Sample message flow Figure[3b|shows a sample Canton message flow. First,
the submitter (Bob in the example) splits the transaction up according to the
Daml privacy model. Next, Bob sends the chopped-up transaction as a batch
of messages to the domain’s sequencer. This batch is the confirmation request.
Crucially, the messages are encrypted with the recipients’ keys, so the sequencer
does not learn the message content. It simply orders, timestamps and distributes
the individual messages from the batch. The timestamps grow monotonically,
yielding a total order, as all messages on a domain go through the sequencer.
The sequencer is trusted to deliver all messages according to this order (this
trust could be distributed through Byzantine fault tolerant mechanisms if nec-
essary). Then, the recipients verify their parts of the confirmation request.
They attempt to lock each contract consumed by their part of the transaction.
If the verification fails, because the submitter is malicious, or because the lock
is already taken, the verifier sends a negative response. Otherwise, it sends a
positive one. All responses are signed and sent to the mediator, an entity run
by the synchronization domain. Canton uses cryptography to ensure that the
responses can be tied into a coherent whole and that malicious participants
cannot violate the system’s integrity. The mediator aggregates the responses

SENT TO ALICE, BOB
Bob exercises swap on

#1: SwapOffer $Alice Bob

SENT TO ISSUERI, ALIC% \SENT TO ISSUER2, BOB

Alice exercises transfer on Bob exercises transfer on
#2: Asset $Issuerl Alice #3: Asset $Issuer2 Bob
create #4: Asset $Issuerl Bob create #5: Asset $Issuer2 Alice
SENT TO ISSUER1, BOB SENT TO ISSUER2, ALICE

(a) A Canton transaction.

Alice Bob Issuerl Issuer2 Sequencer Mediator

Co
Hﬁrma“bn Teqy
est

a T
Timestamp/forvat / %

R
%

\%
\
\
\

Result
_ Resut

Verify request

Forward result

W

(b) Canton message flow.

o,

Figure 3: Canton’s transactions and message flow.

into a final result, signs it, and sends it to the transaction’s participants. The
mediator serves two purposes. First, it protects the participant’s privacy. For
example, Issuerl does not learn that Issuer2 is also involved in the transaction.
Second, while privacy could also be preserved by pseudonymizing the parties
involved, the mediator lowers the total number of messages that must be ex-
changed. After receiving the mediator’s result, the participants release the locks
and, if the result is positive, apply the transaction. That is, they consume the
exercised contracts and create new ones as specified.

Aborts and liveness The above scheme has the problem that a transaction
can get stuck if one of the participants does not respond, because of failures
or maliciousness (mediators are assumed to be highly available). The contracts
that the transaction consumes would then remain locked until a response is
received. We resolve the problem by making the locks abortable, but only after
a specified lease time, known domain-wide. All time-related reasoning is based
on the sequencer timestamps: any transaction participant may send an abort
after observing a sequencer timestamp exceeding the lease time, making the
contract available for other transactions.

The unresponsive participant can still violate liveness for a transaction: it
can prevent even conflict-free transactions from ever getting accepted. This
violation is sometimes acceptable. For example, if a transaction creates a dig-
ital airplane ticket, accepting the transaction would be of dubious value if the
airline’s systems stay unresponsive. For cases where liveness is nevertheless
paramount, a Canton domain can use attestators, entities declared as trusted
for confirmations. The transaction’s parties can choose to disclose sufficient
history to the attestator to convince it that the contracts involving unrespon-
sive parties are still active. The history consists of two parts. The first part
are inclusion proofs, which prove that the contract was recently active. This
proof relies on signed fingerprints of shared state snapshots, which are regularly
exchanged between all pairs of parties that share contracts. The other part are
exclusion proofs, showing that the contracts have not been consumed since the
last snapshot. As an alternative to attestators, the parties can choose to involve
VIP participants as stakeholders in some of their contracts. Like attestators,
these participants are trusted for confirmations. However, like all stakeholders,
and unlike attestators, they see all actions involving the contracts in question.

Auditability and GDPR Daml contracts can have real-world agreements
associated with them. For any contract created or consumed by a transaction,
Canton provides cryptographic evidence of how this happened. Since the Daml
authorization model follows the principles of contract law, the non-repudiation
property of this evidence can be useful in a real-world dispute. Furthermore, the
sequencer signs the stream of messages that it sends to any of the participants,
which serves as a verifiable log. As the participant’s prescribed behavior is
deterministic, the actual behavior can later be audited both for correctness of
operation and the content of the exchanged data. This makes Canton suitable

10

for regulated environments, such as financial markets. However, as Canton’s
commit protocol does not use the log in any way, the history can be pruned or
moved to cold storage at any time.

As Figure [33 shows, Canton strongly aligns with the data minimization re-
quirements of GDPR. As data is processed only where needed, it also aligns
with the requirements on locality of data processing. However, the second main
principle of the GDPR, the right to forget, clashes with the non-repudiation
and auditability requirements. To resolve this tension, Canton allows the par-
ticipants to replace a log entry, or a piece of evidence, with a new one. The
replacement must be signed by all the other participants involved in the old
entry. The replacement refers to the old data only by a hash. In Canton, all
hashes are salted. Once the old data entries are deleted, so are their salts, and
the hashes become unlinkable to the original data. In addition to contracts
and logs, personal information can also appear in the data used by the identity
management component of Canton. However, Canton takes care to separate
such information into identity metadata, which can always be dropped without
affecting auditability.

Multiple domains and global composability A single Canton synchro-
nization domain allows atomic composition of arbitrary workflows. However,
having multiple domains can be beneficial for a multitude of reasons. For ex-
ample, a single global domain would impose a high communication latency for
participants located far from the sequencer. Multiple domains can also help
to increase throughput: requests from different domains can be processed com-
pletely in parallel. There might also be operational concerns. For example,
for critical workflows, a new domain with restricted access can be spawned, to
protect from denial of service and similar attacks. Additionally, we saw that
a domain can specify entities that are trusted for confirmations, but any set
of such entities is unlikely to be universally trusted by everyone. Finally, the
domain operator might charge for its services, and a single global domain would
then lock everyone into using it.

Having multiple domains, however, opens up a new challenge, of how to com-
pose workflows across domains. In Daml terms, composing workflows specifi-
cally means that contracts created on different domains can be used within a
single transaction. Without such an ability, the synchronization domains would
not truly solve the composability problem: they would just create bigger silos.
The hard part is guaranteeing atomicity of such transactions, while maintaining
resilience to unresponsive participants. Since different domains have no com-
mon notion of ordering on its messages, reconciling atomicity with resilience can
become impossible. Thus, Canton allows cross-domain transactions whenever
there exists a single domain that all participants in a transaction are connected
to. Furthermore, Canton allows transfers of contracts between domains. A con-
tract transfer simply marks a different domain as the new authority for ordering
actions on the given contract.

11

Apps Ethereum Fabric Corda Daml Canton

on DBs on one DB

Distributed —— ++ ++ ++ T Ir
transactions

Robust authorization —— — —) ++ T
Transaction privacy ++ — —) + I+
Subtransaction ++ — __ —_ r Tt
privacy + transparency

GDPR compliance ++ — —) + ¥
Horizontal scalability ++ —— ++ ++ ++ Tt
Global composability —— 4+ —— + —_ T

Table 1: Comparison of Canton with other smart contract platforms and tradi-
tional tech. Scale, from worse to better: —— — o + ++

4 Comparison to Other Platforms

We conclude by comparing Canton with several other prominent smart contract
platforms. We also compare it with a traditional setup of organizations im-
plementing applications which run on isolated databases, and a solution where
Daml defines the business logic but is executed on top of a single, centralized
database instance, operated by a trusted third party. The comparison is from
the perspective of implementing a cross-organization distributed application.
Table [I] shows an overview of how the platforms fare with respect to the prop-
erties discussed in this whitepaper.

Distributed transactions and robust authorization All smart contract
platforms support distributed transactions out of the box, as opposed to a tra-
ditional setup of isolated databases and applications sitting on top of them.
However, we see significant differences when it comes to handling authorization.
In Ethereum and Hyperledger Fabric [2], a contract’s programmer has access
to the submitter’s identity, but must manually add authorization checks where
needed. This is a fragile mechanism, as witnessed by the authorization flaw in
the Parity Wallet [15], a contract written by the core developers of Ethereum.
In Corda, authorization is much more fine-grained. Each action (command, in
Corda parlance) within a transaction has an associated set of parties that have
signed, and thus authorized this action. The contract writer can then check
that these authorizations suffice for the task at hand. However, delegation is
hard in Corda: developers must manually decide which commands they choose
to sign. That is, instead of simply signing the SwapOffer contract like in the
Daml example shown earlier, each party must sign the appropriate transfer.

(Sub)transaction privacy A traditional setup provides both transaction
and subtransaction privacy since all connections are bilateral. Ethereum is
the complete opposite: it uses a global shared state visible to everyone. Thus,
all transaction details are public. Fabric’s default privacy model is similar to

12

running many instances of Ethereum in parallel. Each such instance is called
a channel, with all channel data visible to all channel members. Channels are
silos, in that there are no atomic transactions across them. Thus, users must
make a choice between atomicity and privacy. Alternatively, users can store only
data fingerprints on the ledger, using Fabric’s so-called private data collections.
However, both transparency and the ability to atomically compose workflows
across such collections are then lost. Corda, in contrast, limits distribution of
a new transaction to the parties involved in it, and to special notary nodes,
which are part of the infrastructure. However, there is no subtransaction-level
privacy. That is, in the swap example, the issuers would learn the full details
of the swap. Furthermore, for every contract used in the transaction, the entire
chain of transactions leading up to this contract is shown to everyone involved in
the transaction. That is, the Corda model would reveal to Bob every transaction
leading up to contract #2 in Figure[2] Corda proposes to protect privacy using
Intel’s trusted hardware execution environment, SGX [1]. But recent research
results [20] would enable a malicious Bob to easily recover the transaction his-
tory without leaving a trace, even when SGX is used. The reliance on SGX can
thus be problematic for many use cases, also in other platforms [5, 4]. Daml on
SQL, where the parties use Daml to talk to a single SQL database that stores
all data, would provide subtransaction-level privacy for the parties. However,
the database operator(s) would have access to all data. In Canton, the infras-
tructure nodes only see encrypted data, thus learning nothing about it except
for the size.

GDPR compliance For GDPR compliance, applications must be designed
to minimize data collection regardless of the underlying technology. But even
when the application is compliant, sharing the data with the entire world (as
in Ethereum), or indiscriminately with all channel members (as in Fabric) vi-
olates the compliance. Furthermore, the underlying technology makes a large
difference in implementing the right to forget, as this requires amending history.
While this is straightforward with a traditional setup, it is impossible in sys-
tems with an immutable history, such as the one provided by the hash chains of
Ethereum and Fabric. Corda largely complies with data minimization require-
ments and does not rely on hash chains, but it still verifies the entire history
of every contract in all transactions. Thus, implementing the right to forget
compliance would be difficult, as contracts would have to be either returned
to the issuer and reissued, or frozen until their entire history is purged of the
personal data.

Scaling and composability Horizontal scaling (for unrelated workflows) re-
quires some form of partitioning. All of the considered technologies enable
partitioning, apart from Ethereum, which uses a global state. However, the
situation looks very different when we consider global composability. Globally
composing applications running on databases boils down to distributed transac-
tions and authorization. Fabric provides no atomic composition across different

13

channels. Similarly, running Daml on SQL also provides no way to compose two
such installations on two databases. In Ethereum, global composability is triv-
ial, since the state is global. However, composability is lost if multiple instances
of Ethereum are deployed, such as in Enterprise Ethereum scenarios. Corda’s
transfer protocols can be used for atomic composition, by first transferring all
contracts from their original notaries to a single destination notary. Canton also
supports transfers, and it supports direct atomic composition, as long as a joint
domain exists.

References

[1] Ittai Anati et al. “Innovative technology for CPU based attestation and
sealing”. In: Proceedings of the 2nd international workshop on hardware
and architectural support for security and privacy. Vol. 13. ACM New
York, NY, USA, 2013.

[2] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system
for permissioned blockchains”. In: Proceedings of the Thirteenth FuroSys
Conference. ACM, 2018, p. 30.

[3] Digital Asset. Daml examples. GitHub. URL: https ://github . com/
digital-asset|

[4] Mic Bowman et al. “Private Data Objects: an Overview”. In: arXiv:1807.05686
[es] (July 16, 2018). arXiv: |1807.05686. URL: http://arxiv.org/abs/
1807.05686

[6] Marcus Brandenburger et al. “Blockchain and Trusted Computing: Prob-
lems, Pitfalls, and a Solution for Hyperledger Fabric”. In: arXiv:1805.08541
[es] (May 22, 2018). arXiv: 1805.08541. URL: http://arxiv.org/abs/
1805.08541.

[6] CAT NMS Plan The Consolidated Audit Trail. URL: https : //www .
catnmsplan.com/home/about-cat/cat-nms-plan/index.html.

[7] HSN Consultants. Nilson Report. Oct. 2016. URL: https://nilsonreport |
com/upload/content_promo/The_Nilson_Report_10-17-2016.pdf.

[8] Daml - The Enterprise Smart Contract Programming Language. URL:
https://daml.com/.

[9] Digital Asset and ISDA Introduce Tool to Help Drive Adoption of ISDA
CDM. International Swaps and Derivatives Association. Apr. 10, 2019.
URL: https://www.isda.org/2019/04/09/digital-asset-and-isda-
introduce-tool-to-help-drive-adoption-of-isda-cdm/.

[10] Steven Goldfeder et al. “When the cookie meets the blockchain: Privacy
risks of web payments via cryptocurrencies”. In: Privacy Enhancing Tech-
nologies. 2018, p. 21.

[11] Mike Hearn. Corda: A distributed ledger.

14

https://github.com/digital-asset
https://github.com/digital-asset
http://arxiv.org/abs/1807.05686
http://arxiv.org/abs/1807.05686
http://arxiv.org/abs/1807.05686
http://arxiv.org/abs/1805.08541
http://arxiv.org/abs/1805.08541
http://arxiv.org/abs/1805.08541
https://www.catnmsplan.com/home/about-cat/cat-nms-plan/index.html
https://www.catnmsplan.com/home/about-cat/cat-nms-plan/index.html
https://nilsonreport.com/upload/content_promo/The_Nilson_Report_10-17-2016.pdf
https://nilsonreport.com/upload/content_promo/The_Nilson_Report_10-17-2016.pdf
https://daml.com/
https://www.isda.org/2019/04/09/digital-asset-and-isda-introduce-tool-to-help-drive-adoption-of-isda-cdm/
https://www.isda.org/2019/04/09/digital-asset-and-isda-introduce-tool-to-help-drive-adoption-of-isda-cdm/

[12]

Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System”. In: Commun. ACM 21.7 (July 1978), pp. 558-565. ISSN:
0001-0782. DOI: 10.1145/359545. 359563, URL: http://doi.acm.org/
10.1145/359545.359563.

X/Open Company Ltd. X/Open CAE Specification: Distributed Transac-
tion Processing: the XA Specification. X/Open Company Limited, 1991.
PICOPS to be discontinued on May 24th, 2018. Blockchain Infrastructure
for the Decentralised Web. May 18, 2018. URL: https://www.parity.io/
picops-discontinued-may-24th-2018/.

Santiago Palladino. The Parity Wallet Hack Ezxplained. Zeppelin Blog.
July 19, 2017. URL: https://blog . zeppelin . solutions/on- the -
parity-wallet-multisig-hack-405a8c12e8f7.

Raiden Network. URL: https://raiden.network/.

Prabhu Ram, Lyman Do, and Pamela Drew. “Distributed Transactions in
Practice”. In: SIGMOD Record (1999), p. 7.

Goldman Sachs. Profiles in Innovation Blockchain. 2016. URL: https :
//github.com/bellaj/Blockchain/blob/master/Goldman- Sachs-
report-Blockchain-Putting-Theory-into-Practice.pdfl

Alexander Thomson et al. “Calvin: fast distributed transactions for par-
titioned database systems”. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. ACM, 2012, pp. 1-12.

Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution”. In: 27th USENIX Se-
curity Symposium (USENIX Security 18). 2018, pp. 991-1008.

Gavin Wood. “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper 151 (2014), pp. 1-32.

15

https://doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://www.parity.io/picops-discontinued-may-24th-2018/
https://www.parity.io/picops-discontinued-may-24th-2018/
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://raiden.network/
https://github.com/bellaj/Blockchain/blob/master/Goldman-Sachs-report-Blockchain-Putting-Theory-into-Practice.pdf
https://github.com/bellaj/Blockchain/blob/master/Goldman-Sachs-report-Blockchain-Putting-Theory-into-Practice.pdf
https://github.com/bellaj/Blockchain/blob/master/Goldman-Sachs-report-Blockchain-Putting-Theory-into-Practice.pdf

	Introduction
	Daml: Authorization, Privacy, Composition
	Canton Design Sketch
	Comparison to Other Platforms

